流体流动在自然和工程学科中是无所不在的。由于多种时空尺度上的非线性相互作用,可靠的流体计算是一种持久的挑战。可压缩的Navier-Stokes方程管理可压缩流动,并允许复杂的现象,如湍流和冲击。尽管硬件和软件具有巨大进展,但捕获流体流量的最小长度仍然引入了现实生活应用的禁止计算成本。我们目前目前目睹了对机器学习支持的数字方案设计的范式转变,作为解决上述问题的手段。虽然事先工作已经探索了用于单位或二维不可压缩的流体流量的可微分算法,但是我们向使用高阶状态的数值方法提供了一种用于计算可压缩流体流动的完全可微分的三维框架。首先,我们通过计算经典的二维和三维测试用例来展示我们的解决者的效率,包括强烈的冲击和过渡到湍流。其次,更重要的是,我们的框架允许结束到最终的优化来改进计算流体动力学算法内的现有数值方案。特别是,我们正在使用神经网络来替代传统的数控函数。
translated by 谷歌翻译
The United States coastline spans 95,471 miles; a distance that cannot be effectively patrolled or secured by manual human effort alone. Unmanned Aerial Vehicles (UAVs) equipped with infrared cameras and deep-learning based algorithms represent a more efficient alternative for identifying and segmenting objects of interest - namely, ships. However, standard approaches to training these algorithms require large-scale datasets of densely labeled infrared maritime images. Such datasets are not publicly available and manually annotating every pixel in a large-scale dataset would have an extreme labor cost. In this work we demonstrate that, in the context of segmenting ships in infrared imagery, weakly-supervising an algorithm with sparsely labeled data can drastically reduce data labeling costs with minimal impact on system performance. We apply weakly-supervised learning to an unlabeled dataset of 7055 infrared images sourced from the Naval Air Warfare Center Aircraft Division (NAWCAD). We find that by sparsely labeling only 32 points per image, weakly-supervised segmentation models can still effectively detect and segment ships, with a Jaccard score of up to 0.756.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
对解剖学随时间变化的结构变化的临床研究可能会大大受益于人群水平的形状量化或时空统计形状建模(SSM)。这样的工具使患者器官周期或疾病进展相关的工具与群体有关。构造形状模型需要建立定量形状表示(例如,相应的地标)。基于粒子的形状建模(PSM)是一种数据驱动的SSM方法,可通过优化地标放置来捕获总体级别的形状变化。但是,它假设横断面研究设计,因此在代表形状随时间变化方面的统计能力有限。现有的建模时空或纵向形状变化的方法需要预定义的形状地图集和通常在横截面上构建的预先建造的形状模型。本文提出了一种受PSM方法启发的数据驱动方法,以直接从形状数据中学习人口级时空形状。我们介绍了一种新型的SSM优化方案,该方案产生了整个人群(受试者间)和跨时间序列(受试者内)的地标。我们将所提出的方法应用于心房 - 纤维化患者的4D心脏数据,并证明其在表示左心房动态变化方面的功效。此外,我们表明我们的方法在生成时间序列模型(线性动力学系统(LDS))方面优于时空SSM的基于图像的方法。 LDS使用通过我们的方法优化的时空形状模型拟合,可提供更好的概括和特异性,表明它准确地捕获了基本的时间依赖性。
translated by 谷歌翻译
传统的过程挖掘技术将事件数据作为输入,其中每个事件与一个对象完全关联。对象表示过程的实例化。以对象为中心的事件数据包含与表达多个过程相互作用的多个对象关联的事件。由于传统的过程挖掘技术假设与一个对象相关的事件,因此这些技术不能应用于以对象为中心的事件数据。为了使用传统的过程挖掘技术,通过删除所有对象引用,以一种以对象为中心的事件数据来平坦。扁平过程是有损的,导致从扁平数据中提取的不准确的特征。此外,在变平时丢失了以对象事件数据的图形结构。在本文中,我们介绍了一个通用框架,用于从对象事件数据中提取和编码功能。我们在以对象为中心的事件数据上本地计算功能,从而导致准确的度量。此外,我们为这些功能提供了三个编码:基于表格,顺序和图形。尽管表格和顺序编码已在过程挖掘中大量使用,但基于图的编码是一种保留以对象事件数据结构的新技术。我们提供六种用例:为三个编码中的每个编码中的每一个提供可视化和预测用例。我们在预测用例中使用可解释的AI来显示以对象为中心的特征的实用性以及针对预测模型的基于顺序和基于图的编码的结构。
translated by 谷歌翻译
脑小血管疾病的成像标记提供了有关脑部健康的宝贵信息,但是它们的手动评估既耗时又受到实质性内部和间际变异性的阻碍。自动化评级可能受益于生物医学研究以及临床评估,但是现有算法的诊断可靠性尚不清楚。在这里,我们介绍了\ textIt {血管病变检测和分割}(\ textit {v textit {where valdo?})挑战,该挑战是在国际医学图像计算和计算机辅助干预措施(MICCAI)的卫星事件中运行的挑战(MICCAI) 2021.这一挑战旨在促进大脑小血管疾病的小而稀疏成像标记的自动检测和分割方法的开发,即周围空间扩大(EPVS)(任务1),脑微粒(任务2)和预先塑造的鞋类血管起源(任务3),同时利用弱和嘈杂的标签。总体而言,有12个团队参与了针对一个或多个任务的解决方案的挑战(任务1 -EPVS 4,任务2 -Microbleeds的9个,任务3 -lacunes的6个)。多方数据都用于培训和评估。结果表明,整个团队和跨任务的性能都有很大的差异,对于任务1- EPV和任务2-微型微型且对任务3 -lacunes尚无实际的结果,其结果尤其有望。它还强调了可能阻止个人级别使用的情况的性能不一致,同时仍证明在人群层面上有用。
translated by 谷歌翻译
拓扑数据分析(TDA)是来自数据科学和数学的工具,它开始在环境科学领域引起波浪。在这项工作中,我们寻求对TDA工具的直观且可理解的介绍,该工具对于分析图像(即持续存在同源性)特别有用。我们简要讨论理论背景,但主要关注理解该工具的输出并讨论它可以收集的信息。为此,我们围绕着一个指导示例进行讨论,该指导示例是对RASP等人研究的糖,鱼类,花朵和砾石数据集进行分类。 al。 2020年(Arxiv:1906:01906)。我们证明了如何使用简单的机器学习算法来获得良好的结果,并详细探讨了如何用图像级特征来解释这种行为。持续同源性的核心优势之一是它的解释性是可解释的,因此在本文中,我们不仅讨论了我们发现的模式,而且要考虑到为什么我们对持续性同源性理论的了解,因此可以期待这些结果。我们的目标是,本文的读者将更好地了解TDA和持续的同源性,能够确定自己的问题和数据集,为此,持续的同源性可能会有所帮助,并从应用程序中获得对结果的理解包括GitHub示例代码。
translated by 谷歌翻译
机器学习(ML)研究出版物通常在GitHub上提供开源实现,使他们的受众可以复制,验证甚至扩展机器学习算法,数据集和元数据。但是,到目前为止,关于此类ML研究存储库的协作活动程度知之甚少,特别是(1)此类存储库从叉子获得贡献的程度,(2)此类贡献的性质(即类型,变化),以及(3)变更的性质,这些变化未归还给叉子,这可能代表了错过的机会。在本文中,我们对1,346毫升研究存储库及其67,369叉进行了验证,无论是定量还是定性(通过Hindle等人的构建代码更改的开创性分类法)。我们发现,尽管ML研究存储库是大量分叉的,但只有9%的叉子对叉子存储库进行了修改。后者的42%发送给家长存储库的更改,其中一半(52%)被父家存储库接受。我们对539个贡献的定性分析和378个本地(仅叉)变化,扩展了Hindle等人的分类法,其中一个与ML(数据)相关的新顶级变更类别和15个新的子类别,包括9个ML--特定的(输入数据,输出数据,程序数据,共享,变更评估,参数调整,性能,预处理,模型培训)。虽然没有由叉子造成的更改主要是涉及域特定于域的定制和本地实验(例如,参数调整),但原点ML存储库确实错过了不可忽视的15.4%文档更改的13.6%的功能更改,而功能更改的13.6%和11.4%的错误修复更改。本文中的发现将对从业者,研究人员,工具匠和教育者有用。
translated by 谷歌翻译
在设计,制造和控制问题中,我们通常面临合成的任务,其中我们必须生成满足一组约束的对象或配置,同时最大化一个或多个客观函数。合成问题通常是特征在于物理过程,其中许多不同的实现可以实现目标。这种多对一地图对前馈合成的监督学习具有挑战,因为该组可行的设计可能具有复杂的结构。此外,许多物理模拟的不可分化性质可防止有效的直接优化。我们通过两级神经网络架构来解决这两个问题,我们可以认为是一个AutoEncoder。我们首先学习解码器:一个可怜的代理,近似于多对一的物理实现过程。然后,我们学习编码器,从目标映射到设计,同时使用固定解码器来评估实现的质量。我们在两种案例研究中评估方法:添加剂制造中的挤出机路径规划和约束软机器人逆运动学。我们比较我们使用学习的代理商直接优化设计的方法,并监督合成问题的学习。我们发现,我们的方法可以产生比监督学习更高的质量解决方案,同时具有直接优化的质量竞争,计算成本大大降低。
translated by 谷歌翻译